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With the recent growth of functional magnetic resonance imaging (fMRI), scientists across a range of disciplines are comparing
neural activity between groups of interest, such as healthy controls and clinical patients, children and young adults and younger
and older adults. In this edition of Tools of the Trade, we will discuss why great caution must be taken when making group
comparisons in studies using fMRI. Although many methodological contributions have been made in recent years, the sugges-
tions for overcoming common issues are too often overlooked. This review focuses primarily on neuroimaging studies of healthy
aging, but many of the issues raised apply to other group designs as well.
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INTRODUCTION
Group comparisons are not new to psychology or the neu-

rosciences. Since the inception of functional magnetic reso-

nance imaging (fMRI), scientists have compared the neural

activity of groups of interest. In recent years, there has been

particular growth in the number of studies of the aging brain

using neuroimaging (Cabeza et al., 2005; Grady, 2008).

Scientists may compare the brain activity of younger and

older adults to explore a wide range of research interests.

Group comparisons across the life span can potentially

reveal the effects of age-related neural decline, effects of

accumulated experience, motivational differences across

adult development, or the influence of global differences in

time perspective (Reuter-Lorenz, 2002; Reuter-Lorenz and

Lustig, 2005; Carstensen, 2006). However, the inferences

that can be drawn from such comparisons are highly limited

unless care is taken at all stages of the research process from

study design to data analysis to interpretation of the results.

Consider the hypothetical results in Figure 1. This

figure will be referenced throughout the review to help illus-

trate a number of the concerns discussed. The figure displays

the results from a hypothetical cross-sectional fMRI study.

The results of the study reveal a significant main effect of age

group such that younger adults show greater activation than

older adults across several brain regions (Figure 1A). Plotting

the group-averaged ‘neural signal’ (either percent signal

change from the event of interest within a trial or parameter

estimates of a regressor fit) for the two groups confirms the

significant difference (Figure 1B). Further, combining the

younger and older adult samples, a simple correlation reveals

that the neural signal correlates with behavior in the task

(Figure 1C; i.e. the number of pictures encoded in a

memory task). The region of interest (ROI) data used for

the analyses were extracted within individuals using a single

functional mask (Figure 1D–E) created from the results of

the group comparison analysis in Figure 1A. The results of

the study may seem clear: the older adults show less brain

activation and perform worse than the younger adults. The

authors of this particular study might speculate further

that the group differences in task performance are due to

the group differences in neural signal in these regions.

However, as we will discuss throughout this review, there

are several reasons to be skeptical of these conclusions.

Comparing age groups using fMRI is not as simple as

collecting a sample of older participants and assuming that

any differences between age groups are due to differences in

underlying neural computations. Many neurovascular and

morphological changes accompanying healthy aging can

confound results. This review highlights potential problems

with comparing younger and older adults using fMRI, with

an emphasis on solutions. We review three areas (group dif-

ferences in hemodynamics, brain morphology and variance/

noise) and summarize solutions that have been proposed in

the literature. Although, a number of excellent methodologi-

cal papers and chapters have appeared in recent years, they

are rarely cited and the suggestions for overcoming common

issues are often not implemented. Our goals are to summa-

rize this research and provide a succinct and easily accessible

Received 27 April 2008; Accepted 1 August 2008

During the preparation of this article, G.R.S.-L. was supported by National Institute of Mental Health

training grant 5T32-MH019956 awarded to Stanford University and M.D’E. was supported by National Institute

on Aging grant 5R01-AG015793 and National Institute of Neurological Disorders and Stroke grant 2P01-

NS040813. Thanks to Jeffrey C. Cooper, Russell Poldrack, Tor Wager and two anonymous reviewers for helpful

suggestions and discussion.

Correspondence should be addressed to Gregory R. Samanez-Larkin, Department of Psychology, Jordan Hall,

Building 420, Stanford, CA 94305-2130, USA. E-mail: glarkin@stanford.edu.

doi:10.1093/scan/nsn029 SCAN (2008) 3, 290–297

� 2008 The Author(s)
This is an Open Access article distributedunder the terms ofthe Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits
unrestricted non-commercialuse, distribution, and reproduction in anymedium, provided the originalwork is properlycited.

 by guest on M
arch 22, 2013

http://scan.oxfordjournals.org/
D

ow
nloaded from

 

http://creativecommons.org/licenses/by-nc/2.0/uk/
http://scan.oxfordjournals.org/


set of rules of thumb for conducting studies of the aging

brain using functional neuroimaging.

PROBLEMS
Group differences in hemodynamics
The most investigated methodological question in the neu-

roimaging and aging literature is whether the coupling

between neural activity and the blood-oxygen-level-

dependent (BOLD) signal changes with age (D’Esposito

et al., 2003). Common age-related changes in vasculature

can lead to age-related differences in the BOLD signal that

might not be due to true differences in neural computation

(for a review, see Gazzaley and D’Esposito, 2005). One

primary goal of functional brain imaging is to identify

regions of the brain whose activation correlates with psycho-

logical events of interest. Standard brain imaging analysis

programs begin by constructing a regression model with

the predicted timecourses for these psychological events.

These predictors are then convolved with a standard

hemodynamic response function (HRF) to account for the

lag and shape of the BOLD response measured by fMRI. If

the shape of this HRF significantly deviates from the HRF of

an individual�for example, if vascular rather and not neural

changes result in age-related differences in the peak ampli-

tude or shape of the HRF�the model may fit less well and

become biased.

Group differences in brain morphology
A second important issue in studies comparing groups

differing in age is that there is great anatomical variability

between the brains of younger and older adults and within

a random sample of older adults (Raz et al., 2005; Raz et al.,

2007). Gray matter atrophy and sulcal expansion in older

adults contributes to a more uneven cortical surface which

can lead to distortions in automatic spatial normalization

(Crinion et al., 2007). Spatial normalization is an image

processing step commonly utilized in brain imaging analysis

packages to enable group-averaged statistical comparisons

Fig. 1 This figure displays hypothetical results from a cross-sectional study examining differences in brain activity between younger and older adults. Although, the results of this
hypothetical study may seem to suggest that the poorer performance of older adults is due to their showing less brain activation than the younger adults in these regions, there
are several reasons detailed in the text to be skeptical of these conclusions. (A) A whole brain analysis reveals a main effect of age (Young > Old) in three regions: lateral
prefrontal cortex, anterior cingulate and medial caudate. (B) An example of BOLD signal change plotted from one of these regions reveals significantly greater activation in
younger adults. (C) A scatter plot displays a significant simple correlation between neural signal (x-axis) and behavior (y-axis) across all participants (younger and older adults
combined). (D) The individual data points (used in the previous bar graph and the x-axis in the scatter plot) plotted here by age group reveal a nonnormal (bimodal) distribution
of the data for the older adults. About half of the sample has BOLD signal change values near zero. (E) The data plotted in panels (B)–(D) were extracted using a single ROI mask
shown here overlaid on a random sample of individual participants’ T1 anatomy (axial; TT S¼ 10; MNI S¼ 12). The participant ages are listed below each image. It is clear in
these images that this single mask does not align well with the individual participants’ anatomy. The data points for each of these four sample participants have been highlighted
with red dots and labeled with the participant ages in panels (C) and (D).

Imaging the aging brain SCAN (2008) 291

 by guest on M
arch 22, 2013

http://scan.oxfordjournals.org/
D

ow
nloaded from

 

http://scan.oxfordjournals.org/


across the whole brain. These normalization algorithms

attempt to account for differences between individual par-

ticipants brain anatomy by aligning each participant’s

anatomy to a template image. Unlike age differences in

neurovascular coupling, differences in spatial normalization

between younger and older adult groups has received little

attention. Because all spatial normalization algorithms

warp an individual brain according to a template brain,

the more participants deviate from the template, the more

likely the warp will lead to errors. In fact, inaccurate spatial

normalization in the form of cortical overinflation in a

sample of older adults has been previously documented

(Buckner et al., 2004).

Differences in brain morphology between groups can also

impact ROI analyses. Even a highly accurate and reliable

normalization algorithm is not perfect. As such, regardless

of the algorithm used, ROIs cannot be reliably specified in

single subjects from a mask created by a group (or between-

group) activation map (Swallow et al., 2003; Poldrack, 2007).

This is a serious concern even for relatively homogeneous

samples of younger adults (Devlin and Poldrack, 2007),

and the concern is only magnified when comparing partici-

pants across the life span. Normal, age-related atrophy of the

brain results in an increased likelihood of partial volume

effects (sampling both gray and nongray matter or multiple

neighboring regions in one voxel or region of interest) with

increasing age across a range of structures. Once again,

consider the hypothetical results of Figure 1. The age

group differences in the activation map (Figure 1A) could

simply be due to the fact that some older adults have less

gray matter in those specific regional sites. In fact, whether

ROI masks are created from thresholded clusters in a group

comparison map (orange outlines in Figure 1E) or the peak

voxels of difference (solid, yellow voxels in Figure 1E) are

used to extract the signal in each participant, there is

a reasonable likelihood that these masks will not sample

gray matter in all participants. Due to age-related structural

atrophy, that likelihood is correlated with age. As illustrated

in Figure 1E, the peak voxels and the majority of the cluster

masks are sampling CSF in the older adults, which could

be contributing to the group differences in Figure 1A–D.

Group differences in variance/noise
In addition to structural atrophy and sulcal and ventrical

expansion with age, although previous studies have found

an increasing spread of activation across regions of the

brain (Cabeza, 2002), clusters of functional activation are

often smaller in extent within a region in older samples

(D’Esposito et al., 1999; Buckner et al., 2000; Hesselmann

et al., 2001; Huettel et al., 2001; Handwerker et al., 2007).

However, previous studies have revealed that there is similar

BOLD signal amplitude between groups at peak voxels within

these clusters (D’Esposito et al., 1999; Aizenstein et al., 2004).

One of the reasons for these smaller activation extents around

a peak voxel might be that older adults are more likely to

have noisy or deactivated voxels within an ROI (D’Esposito

et al., 1999; Huettel et al., 2001; Aizenstein et al., 2004).

These group differences in noise can influence or invalidate

the results of most common statistical tests.

SOLUTIONS
Fortunately, despite the observed differences in hemody-

namics, morphology and noise, comparisons between

younger and older adults are possible. Several solutions

have been proposed in the literature to address these poten-

tial problems.

Controlling for differences in hemodynamics
To address the potential problems that can arise from group

differences in hemodynamics, at least three solutions have

been proposed: (i) local measurement of individual partici-

pant HRFs; (ii) global control of HRFs using hypercapnia;

and (iii) improvements in experimental design.

One solution to control for potential group differences in

the HRF is for participants, while undergoing fMRI, to per-

form both the tasks of interest and a task to derive an HRF.

The data from this latter task (commonly a short, simple

visual or motor task) can then be used to estimate the indi-

vidual HRFs for each participant. This individualized HRF

estimate can then be used in the regression model to con-

volve regressors. However, it is important to note that there

is considerable variability not only between individuals but

also across regions of the brain within individuals (Aguirre

et al., 1998; Handwerker et al., 2004). Further, typically

a visual or motor task is used to estimate the HRF but the

brain regions of interest are not primary cortex but associa-

tion cortex. Nevertheless, convolving model regressors with

an individualized HRF derived from motor cortex will pro-

duce a better estimate of other areas of cortex within an

individual than a canonical HRF (Handwerker et al., 2004).

A second alternative is to use breathholding (which

induces hypercapnia) to produce global changes in the

BOLD signal (Cohen et al., 2004; Handwerker et al., 2007).

Both hypercapnia and task-related BOLD signal should be

influenced by the same vascular differences. This strategy

would allow researchers to normalize the task-related

signal change with the hypercapnia-induced signal change

from the same voxels to get closer to examining true

group differences in neural activity (Handwerker et al.,

2007). With a short additional scanning run, researchers

can obtain this voxelwise global normalization factor.

Whether using a visuomotor task to derive an HRF or a

breathholding task to induce hypercapnia to normalize the

BOLD signal within individual participants, it would be a

good practice to always display the signal (timecourses) for

each group for the task of interest, even if this is relegated to

a supplementary figure.

A third solution to overcome the issues related to hemo-

dynamics is improvement in experimental design that allows

for investigation of interaction effects (Buckner et al., 2000;
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Gazzaley and D’Esposito, 2005; Rugg and Morcom, 2005).

Unlike main effects of age, interaction effects with age within

a region are highly unlikely to be due to group differences in

neurovascular coupling, because age-related differences in

neurovasculature should influence all conditions equally.

With an interaction design, a study may reveal similar

signal across age in one condition, but different (diminished

or increased) signal in older adults in another condition

(Mather et al., 2004; Gazzaley et al., 2005). For research

questions in which either it is difficult to design an ideal

control condition or the primary interest is in a main

effect, a parametric design should be used (Gazzaley et al.,

2005). An ideal design is to have parametric manipulations

nested within conditions so that effects of age within one

condition can be safely explored (Samanez-Larkin et al.,

2007). The BOLD signal in one specific condition or trial

type should never be directly compared between groups.

Instead, the size of a within-group condition or parametric

effect should be compared between groups.

This issue of assessing between-group differences in

within-group effects is also relevant to individual difference

analyses. As discussed above, older adults may have reduced

BOLD signal due to vascular differences or an increased like-

lihood of sampling nongray matter. They may also perform

worse in a task for unrelated reasons. In the example in

Figure 1C, the simple correlation between BOLD signal

and task behavior is significant, but not the partial correla-

tion controlling for age. In fact, the correlation is close to

zero within each age group. For example, there may be a

main effect of age on the number of pictures encoded in

a memory task, the response latency in an attentional inter-

ference task, or overall reaction time. There may also be a

main effect of age on global BOLD amplitude. However,

if the effects are not assessed within the two groups or the

individual difference analysis across all participants does not

partial out the group difference (i.e. age), illusory relation-

ships between brain activity and behavior may emerge.

Correlations between behavioral measures and brain activa-

tion must control for age to be meaningfully interpreted

(Samanez-Larkin et al., 2008). Likewise, correlations between

age and brain activation should control for behavioral per-

formance (Samanez-Larkin et al., 2007).

An important caveat related to the effectiveness of inter-

action designs in assessing true group differences in neural

activity is that this solution relies on the assumption that the

vascular changes are regionally limited and the linearity of

neurovascular coupling is preserved into old age. Interaction

effects alone are not sufficient for ruling out artifactual dif-

ferences between groups. Consider a case in which there is

double the BOLD signal amplitude in younger than older

adults. If there is an additional main effect of task condition,

an artifactual age-related interaction might emerge as well.

In summary, we recommend the use of both interaction

designs and HRF normalization (using a hypercapnic control

or a visuomotor localizer as described above). Improvements

in experimental design and controls should lead to stronger

inferences that can be drawn not only from functional neu-

roimaging studies of aging in particular1 but also functional

neuroimaging studies in general.

Controlling for differences in brain morphology
To address the potential problems that can arise from group

differences in brain structure, at least two solutions have

been proposed: (i) improvements in spatial normalization

and (ii) within-individual adjustments in ROI analyses.

Software packages differ in the accuracy of their spatial

correction (Crivello et al., 2002; Robbins et al., 2004;

Ardekani et al., 2005). Many of the brain imaging analysis

software programs will continue to evolve and it is up to

responsible researchers to compare the normalization results

using a few different methods in order to find the most

optimal warp given their specific population. Researchers

should routinely examine the normalization results and

qualitatively report these results. At minimum, we recom-

mend a visual inspection of the normalization results of each

individual participant to ensure accurate alignment, espe-

cially in structures of interest, between individuals and the

template brain. If one normalization method is unsatisfac-

tory, it may be necessary to try another. With the introduc-

tion of a universal file format by the Neuroimaging

Informatics Technology Initiative (NIFTI; http://nifti.nimh.

nih.gov/), the same data files can easily be used in different

brain imaging analysis software programs. Researchers can

normalize in one program and run all of the other analysis

and visualization routines in another program. One impor-

tant caveat is that software programs differ in whether they

use the Montreal Neurological Institute (MNI) or Talairach

(TT) coordinate system as the default normalized space. In

addition to the standard algorithms used in common brain

imaging analysis packages, a number of new techniques are

continually being developed (Suckling et al., 2006; Joshi

et al., 2007; Postelnicu et al., 2007) but are not yet integrated

into the processing pipelines of standard packages. In the

future, these different approaches will be more easily acces-

sible so that all researchers can more simply take advantage

of the features of many programs without having to apply

additional warping when translating from one program to

another. Such an effort is underway in the Neuroimaging

in Python (NiPy; http://neuroimaging.scipy.org/) project

(Millman and Brett, 2007).

In addition to identifying optimal normalization algo-

rithms, one study has suggested that researchers could

improve the accuracy of results by using an appropriate,

population-specific template brain as the target for

normalization (Buckner et al., 2004). This study contains

instructions in the appendix for creating your own popula-

tion-specific template (Buckner et al., 2004). In addition, the

Open Access Series of Imaging Studies (OASIS) contains a

1 For a more thorough discussion of experimental design in studies of human aging, see Rugg and

Morcom (2005).
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growing number of sample anatomical data files spanning

adult age as well as anatomy from both healthy older adults

and older adults clinically diagnosed with dementia (Marcus

et al., 2007). As new normalization algorithms are developed,

software developers could take advantage of this database

to optimize the accuracy of their programs by testing the

performance of the spatial normalization algorithms on

a population varying in age and clinical status (Mega et al.,

2005; Suckling et al., 2006).

The goal of spatial normalization is to equate whole brain

size and align key structures so that when averaged maps are

created across a group of subjects, there can be reasonable

confidence in the localization of effects (Ashburner and

Friston, 1999). Activation maps should be the starting, not

ending point for group analyses. These maps should be used

only to identify key regions of interest to follow up with

more careful visualization of activation timecourses and

ROI analyses.

For ROI analyses, manual adjustments need to be made

within individuals. There are at least two options for correct-

ing ROIs within individuals. If a single mask is created from

a functional group map or group difference map, this map

should be overlaid on each individual participant and if

partial volume effects occur, the mask should be nudged

so that only gray matter in the brain structure of interest

is sampled (for an example, see the supplementary methods

of Samanez-Larkin et al., 2007). If the ROIs are anatomically

defined, they should be defined on individual participants.

In summary, one solution for appropriate ROI analyses is

to first spatially normalize (to approximately equate the

size of ROIs relative to whole brain across participants),

and then manually define or adjust ROI masks for each

individual’s anatomy (Poldrack, 2007).

Controlling for differences in noise/variance
To address the potential problems that can arise from group

differences in noise/variance, at least two solutions have

been proposed: (i) censoring outliers and (ii) the use of

appropriate statistical tests.

It has been previously suggested that increasing spatial

smoothing will help reduce both spatial normalization

errors and noise in cross-sectional functional neuroimaging

studies. We do not recommend this strategy for two reasons.

First, increasing the smoothing kernel will only exacerbate

the problem of increased noise by including more outlier

voxels (i.e. voxels whose values lie standard deviations

away from the surrounding voxels). Second, a general issue

with large smoothing kernels is partial volume effects.

Increasing the smoothing kernel may help reduce noise but

will lead to partial voluming of neighboring cortex and CSF

in cortical regions of interest due to the tortuosity of the gyri

and sulci and partial voluming of neighboring ventricles or

structures in subcortical regions of interest. Importantly,

many subcortical regions of interest are small relative to

standard voxel sizes, so a large kernel will blur over these

regions entirely. For these reasons, we recommend small spa-

tial smoothing kernels. We cannot recommend a specific

smoothing kernel because optimal smoothing is dependent

on voxel size and contrast to noise ratio (Weibull et al., 2008).

Instead of increasing the spatial smoothing, the problem

of increased noise in an older adult sample can be addressed

by excluding voxels that can be considered outliers within

each ROI within participants. A recent study used a prob-

abilistic atlas to define anatomical ROIs in individual par-

ticipants, masked these ROIs for gray matter only, and then

excluded outlier voxels within each region (Aizenstein et al.,

2006). These trimmed regions will likely include fewer voxels

in the older adults, which can lead to noisier or less reliable

estimates in this group. If outlier voxels are censored within

participants, the statistical threshold for significance should

be set within-individual by taking into account the number

of voxels in the ROI (Handwerker et al., 2007). Due to group

differences not only in outliers but also structural atrophy,

it is best to use small or censored volumes to maximize

comparisons of the peak signal and minimize noise across

age groups.

For reasons described above (differences in neurovascular

coupling, structural and physiological variability, outlier

voxels) and others, neuroimaging data from an older

group of participants may be noisier than from a younger

group. This difference can lead to unequal variance between

age groups, violating the core assumptions of many common

statistical analyses. It is standard practice in behavioral

research to assess the equivalence of variance between

groups. Unfortunately, variance equivalence tests are rarely

reported in the functional neuroimaging literature. Because

variance may increase with age, group comparisons should

include at least as many, if not more, older than younger

adults. Importantly, nearly all of the problems raised in

this review are exaggerated when studies are underpowered.

Even with sufficient and equal sample sizes, statistical

tests of variance between groups should be reported. If

variance is unequal, there are at least two options for

addressing this problem. Investigators can either use non-

parametric tests or take advantage of multilevel modeling

techniques currently implemented in FSL (Woolrich et al.,

2004; http://www.fmri.ox.ac.uk/fsl/) and under develop-

ment in the Multi-level Mediation/Moderation (M3) tool-

box (Davidson et al., 2008; http://www.columbia.edu/cu/

psychology/tor/).

Now consider the hypothetical results displayed in

Figure 2. This figure displays results from a more care-

fully designed and reliable cross-sectional fMRI study. The

results of this hypothetical study reveal a significant condi-

tion by age group interaction across several brain regions

(Figure 2A) such that younger and older adults do not

differ in condition R, but younger adults show greater acti-

vation than older adults in condition S. Plotting the group-

averaged BOLD signal for the two groups clearly confirms

the significant and nonsignificant differences (Figure 2B).
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Further, the neural signal difference in condition S correlates

with behavior in the task controlling for age group

(Figure 2C). Plotting the individual participants activation

confirms that the effects are not driven by outlier subjects

(Figure 2D). The ROIs were manually adjusted on the anat-

omical images of individual participants to include gray

matter only (Figure 2E). The authors include timecourses

of activation to demonstrate that the age differences in con-

dition S are not due to significant abnormalities in the shape

of the HRF between age groups (Figure 2F). The results

of this study are not only much more convincing but also

lead to stronger inferences that can be drawn from the data.

Thus, with the proper care, group comparison studies using

functional imaging have the potential to make lasting theo-

retical contributions to the psychology and biology of aging.

SUMMARY
We hope this review serves as a helpful reference for aging

researchers as well as journal editors and reviewers of

aging studies. Peer review of aging studies should carefully

consider the issues we have addressed and require that

researchers address them in their studies. Thus, we encour-

age current and future researchers to consistently follow

these simple guidelines and report how they addressed

between-group differences. Nearly all scientific journals

Fig. 2 This figure displays hypothetical results from a more carefully designed and analyzed cross-sectional study. (A) A whole brain analysis reveals an interaction effect with
age (Age� Condition� Level) in the lateral prefrontal cortex, anterior cingulate and medial caudate. (B) An example of BOLD signal change plotted from one of these regions
reveals similar activation in younger and older adults in condition R and significantly different activation between age groups in condition S. (C) A scatter plot displays a
significant partial correlation (controlling for age) between neural signal (a difference score between levels in condition S) and behavior (a difference score in task performance
between levels in condition S). (D) The individual data points (the difference scores in condition S used in the x-axis in the scatter plot) plotted here by age group reveal
approximately normal distributions of the data in both younger and older adults groups. (E) In this hypothetical study, ROI masks were individually defined on single participants.
These individualized masks are overlaid on a sample of participants’ T1 anatomy (axial; TT S¼ 10; MNI S¼ 12). The individual participant ages are listed below each image. It is
clear from the images that these individual masks provide much better spatial accuracy than the single mask used in Figure 1. The data points for each of these four sample
participants have been highlighted with red dots and labeled with the participant ages in panels (C) and (D). (F) A sample set of timecourses of activation from the ROI analysis
visually confirm the age group by condition interaction. It is clear from these plots that the age differences are not due to group differences in the general shape, height or
latency of the BOLD signal in this region of the brain.
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now allow appendices to be published alongside an article. If

space is limited in the main text of an article, these essential

methodological details should be included in a supplement

or appendix.

Conducting an appropriate and interpretable group com-

parison study using fMRI requires a high level of attention

to detail. We have addressed three core group differences

that can bias results and have suggested many solutions

for improving group comparisons. This set of minimum

standards summarized in Table 1 should include: (i) appro-

priate controls for group differences in HRFs; (ii) interaction

or parametric interaction designs; (iii) assessment of effects

within groups; (iv) controlled behavioral performance or the

inclusion of performance measures as covariates; (v) com-

parison and selection of the best normalization algorithms;

(vi) the use of appropriate reference anatomical templates;

(vii) the specification or adjustment of regions of interest on

individual participants regardless of age; (viii) the assessment

of unequal variance between groups; (ix) sufficient sample

sizes in each group; and (x) the use of nonparametric or

multilevel statistical models where appropriate. Although,

this review has focused primarily on studies of human

aging, these methodological suggestions are not specific to

comparisons of younger and older adults. Although, the

group differences (in brain morphology or noise) between

younger and older adults may be more pronounced than in

other group comparison studies, all of the issues raised and

many of the recommended solutions apply to studies com-

paring children and young adults or clinical patient groups

and healthy age-matched controls.
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